

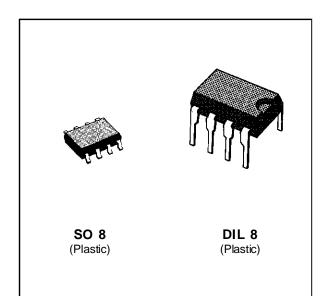
THDT51 THDT65

TRISIL FOR SLIC PROTECTION

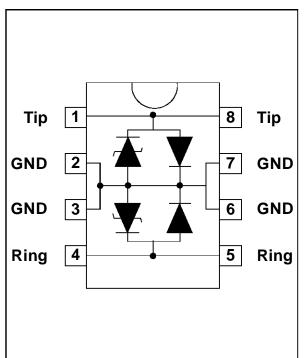
FEATURES

- DUAL ASYMETRICAL TRANSIENT SUPPRESSOR
- PEAK PULSE CURRENT:
 I_{PP} = 30 A, 10/1000 μs.
- HOLDING CURRENT = 150 mA min
- BREAKDOWN VOLTAGE
 - THDT51 = 51 V
 - THDT65 = 65 V.
- LOW DYNAMIC CHARACTERISTICS
- AVAILABLE IN SO8 AND DIL8.

DESCRIPTION

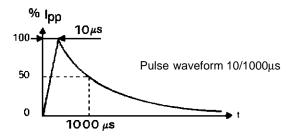

These devices have been especially designed to protect subscriber line card interfaces (SLIC) against transient overvoltages.

A particular attention has been given to the internal wire bonding . A 4-points configuration ensures a reliable protection, eliminating the overvoltage introduced by the parasitic inductances of the wiring (Ldi/dt) especially for very fast transients.


This new product generation, is providing very high surge current capability, in small packages like SO 8 and DIL 8. Dynamic characteristics have also been defined in order to meet SLIC max rating.

IN ACCORDANCE WITH FOLLOWING STANDARDS :

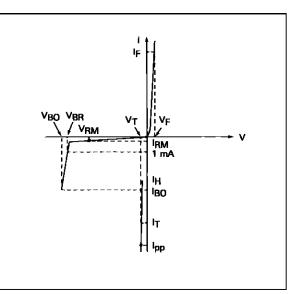
CCITT K17 - K20	{ 10/700 μs 5/310 μs	1.5 kV 38 A
VDE 0433	{ 10/700 μs 5/200 μs	2 kV 50 A
CNET	{ 0.5/700 μs 0.2/310 μs	1.5 kV 38 A



SCHEMATIC DIAGRAM

ABSOLUTE RATINGS	(limiting	values)	(-40°C ≤	T _{amb} ≤ +85°C)
------------------	-----------	---------	----------	---------------------------

Symbol	Parameter	Value	Unit	
lpp	Peak pulse current	10/1000 μs 5/320 μs 2/10 μs	30 40 90	A
ITSM	Non repetitive surge peak on-state current tp = 10 ms tp = 1 s		10 5	A
di/dt	Critical rate of rise of on-state current	Non repetitive	100	A/μs
dv/dt	Critical rate of rise of off-state voltage	5	KV/μs	
T _{stg} Tj	Storage and operating junction temperature rar	- 55 to + 150 + 150	°C °C	


THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
R _{th} (j-a)	Junction-to-ambient	DIL 8 SO 8	125 170	°C/W °C/W

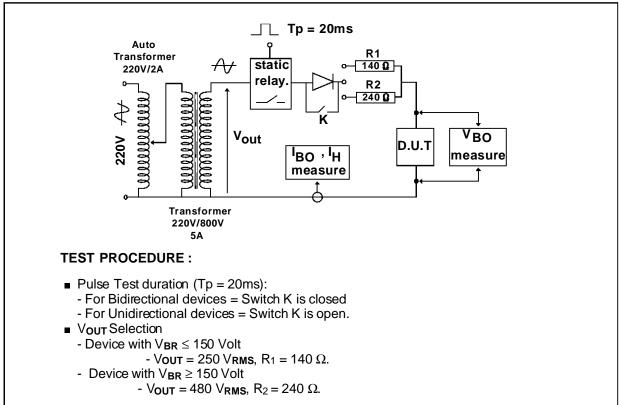
ELECTRICAL CHARACTERISTICS

Symbol	Parameter			
VRM	Stand-off voltage			
VBR	Breakdown voltage			
VBO	Breakover voltage			
ΙΗ	Holding current			
VT	On-state voltage			
VF	Forward Voltage Drop			
IBO	Breakover current			
IPP	Peak pulse current			

PARAMETERS RELATED TO DIODE LINE/GND

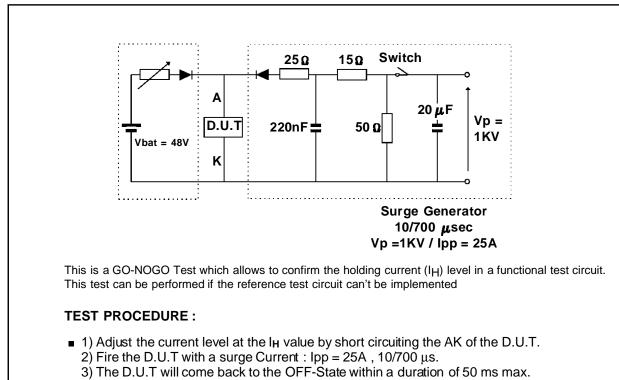
Symbol	Test conditions	Value	Unit
VF	Square pulse, $tp = 500 \mu s$, $IF = 3 A$.	3	V
VFP	Ipp = 30A, 10/1000μs	7	V

PARAMETERS RELATED TO PROTECTION THYRISTOR


Types	IRM @	VRM	VBR	@ IR	VBO	@	Iво	ŀΗ	٧T	С
	max		min		max	min	max	min	max	max
						note1		note1	note2	note3
	μΑ	v	v	mA	v	mA	mA	mA	v	рF
THDT51	10	50	51	1	70	50	500	150	4	200
THDT65	10	56	65	1	85	50	500	150	4	200

All parameters tested at 25°C, except where indicated

Note 1 : See the reference test circuit for $I_{H},\ I_{BO}$ and V_{BO} parameters.


Note 2 : Square pulse Tp = $500 \,\mu\text{s}$ - H = 5A. Note 3 : V_R = 1V, F = 1MHz.

REFERENCE TEST CIRCUIT FOR $I_{H},\,I_{BO}$ and V_{BO} parameters :

FUNCTIONAL HOLDING CURRENT (I_H) TEST CIRCUIT = GO - NOGO TEST.

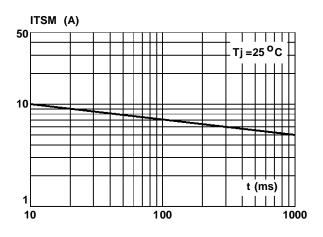
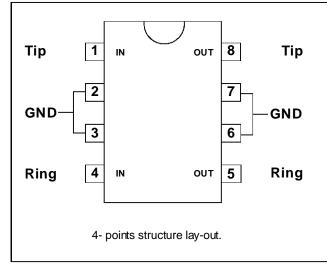
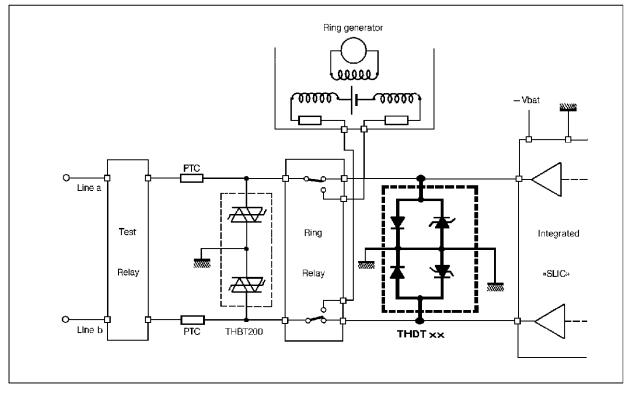
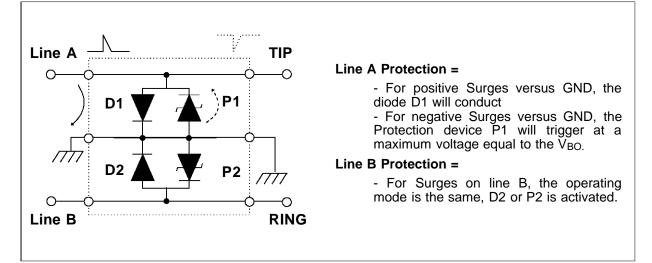



Figure 1 : Non repetitive surge peak on-state current. (with sinusoidal pulse : F = 50Hz)

APPLICATION NOTE.

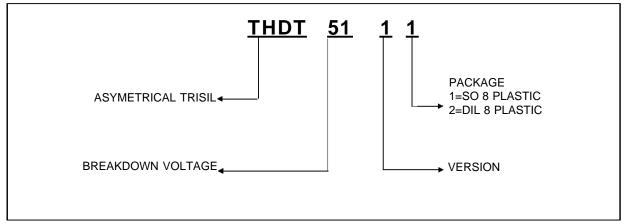

1) Connect pins 2, 3, 6 and 7 to ground in order to guarantee a good surge current capability for long duration disturbances.

2) In order to take advantage of the "4-points structure" of the THDTxx, the tip and Ring lines have to cross through the device. in this case, the device will eliminate the overvoltages generated by the parasitic inductances of the wiring (Ldi/dt), especially for very fast Transients.



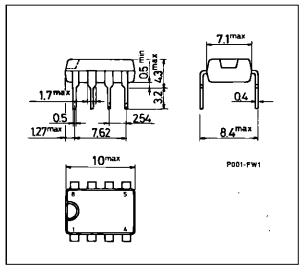
APPLICATION CIRCUIT

Typical slic protection concept

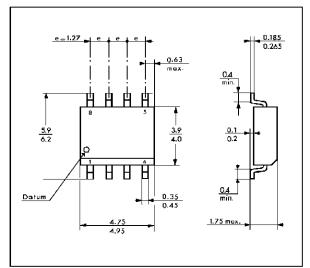


FUNCTIONAL DESCRIPTION

ORDER CODE

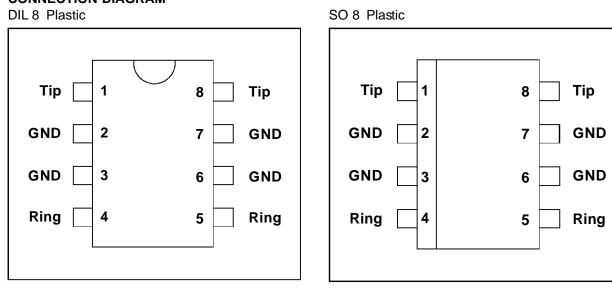

MARKING

Package	Туре	Marking	Package	Туре	Marking
	THDT5111	DT5111		THDT5112	DT5112
SO8	THDT6511	DT6511	DIL8	THDT6512	DT6512


Packaging : Products supplied in antistatic tubes.

PACKAGE MECHANICAL DATA (in millimeters)

DIL 8 Plastic



SO 8 Plastic

CONNECTION DIAGRAM

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

